Quantum Rings and Recursion Relations in 2D Quantum Gravity
نویسندگان
چکیده
I study tachyon condensate perturbations to the action of the two dimensional string theory corresponding to the c=1 matrix model. These are shown to deform the action of the ground ring on the tachyon modules, confirming a conjecture of Witten. The ground ring structure is used to derive recursion relations which relate (N+1) and N tachyon bulk scattering amplitudes. These recursion relations allow one to compute all bulk amplitudes.
منابع مشابه
Effect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملTime-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملSolving Topological 2D Quantum Gravity Using Ward Identities
A topological procedure for computing correlation functions for any (1, q) model is presented. Our procedure can be used to compute any correlation function on the sphere as well as some correlation functions at higher genus. We derive new and simpler recursion relations that extend previously known results based on W constraints. In addition, we compute an effective contact algebra with multip...
متن کاملEffect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملRecursion relations in Liouville gravity coupled to the Ising model satisfying fusion rules.
The recursion relations of 2D quantum gravity coupled to the Ising model discussed by the author previously are reexamined. We study the case in which the matter sector satisfies the fusion rules and only the primary operators inside the Kac table contribute. The theory involves unregularized divergences in some of correlators. We obtain the recursion relations which form a closed set among wel...
متن کامل